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Abstract. Assuming that ρ -mesons exist in a quark-gluon plasma at temperatures close to the QCD phase
transition, we calculate the dilepton production rate from q-q̄ annihilation via a ρ -meson state using
Vector Meson Dominance. The result is compared to the rates from direct q-q̄ annihilation and from π+-
π− annihilation. Furthermore we discuss the suppression of low mass dileptons if the quarks assume an
effective mass in the quark-gluon plasma.

PACS. 25.75.-q Relativistic heavy-ion collisions – 12.38.Mh Quark-gluon plasma – 14.40.Cs Other mesons
with S = C = 0, mass <2.5 GeV

Dileptons are one of the most promising signatures for
medium effects in the fireball in relativistic heavy ion col-
lisions. At SPS there is an indication for an enhancement
of the dilepton production at invariant masses between 200
and 800 MeV compared to all known sources neglecting
medium effects [1]. Possible explanations of this enhance-
ment are the broadening of the width of the ρ -meson by
scattering in the medium and the reduction of the ρ -mass
by the on-set of the restoration of chiral symmetry [2].

Furthermore dileptons may indicate the formation of a
quark-gluon plasma (QGP) phase, in particular at RHIC
and LHC [3]. In a perturbative calculation the lowest or-
der contribution to the dilepton production from the QGP
comes from the direct q-q̄ annihilation into a virtual pho-
ton (Born term) [4]. At high invariant masses M this con-
tribution is believed to dominate. For low invariant masses
of the order of gT , on the other hand, αs-corrections be-
come important [5–7]. Close to the critical temperature g
might be as large as 6 [8]. Hence αs-corrections could be
important even at invariant masses up to M = 1 GeV or
larger.

In order to avoid infrared singularities and gauge de-
pendent results, HTL resummed propagators and vertices
[9] have to be used in perturbative calculations of the
dilepton production from the QGP [6,7]. The dilepton rate
follows from the imaginary part of the finite temperature
photon self energy. Unfortunately, it turned out that 2-
and probably even 3-loop contributions [10] to the photon
self energy are of the same order in αs as the 1-loop contri-
bution and exceed the latter one even by factors of 3 and
more. Thus the application of finite temperature pertur-
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bation theory suffers from the facts that higher order loop
corrections are important even in the weak coupling limit
and moreover that realistic values of the strong coupling
constant are not small.

The importance of non-perturbative effects in a QGP
at temperatures within reach of heavy ion collisions has
been realized in QCD lattice calculations, where for exam-
ple the equation of state, condensates, and hadronic cor-
relators below and above the phase transition have been
studied [11].

It has been noticed that the equation of state found
on the lattice can be described perfectly by an ideal gas
of massive quarks and gluons (quasiparticles), where an
effective, temperature dependent mass of the order gT for
the partons has been introduced [8]. The effective quark
and gluon mass at temperatures around the critical one
Tc is of the order 0.5 GeV. This will lead to a complete
suppression of dileptons from the QGP below about M =
1 GeV as we will discuss at the end of the present paper.

The existence of a gluon condensate above Tc can be
used to construct an effective quark propagator in the
QGP [12]. The quark dispersion relation following from
this propagator has two branches, of which one shows a
minimum at finite momentum. This leads to an interest-
ing structure of the dilepton spectrum, exhibiting peaks
(Van Hove singularities) and gaps [6,13].

In the present paper we want to study the conse-
quences of the existence of hadronic states in the QGP
at temperatures around Tc as indicated by lattice calcu-
lations [14] and the gauged linear sigma model [15] on
the dilepton production from the QGP. This temperature
regime plays an important role in relativistic heavy ion col-
lisons as the mixed phase with T = Tc may exist for a long
period in the fireball and might contribute significantly to
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the photon and dilepton production (see e.g. [16]). In par-
ticular, we consider a possible co-existence of quarks and
ρ -mesonic states in the QGP, because ρ -mesons are an
important source for dileptons. Although one expects that
ρ-mesons vanish above Tc quickly with increasing temper-
ature [14], they might be present at temperatures around
Tc [15].

We assume a simple coupling of the quarks to ρ -
mesonic states in the QGP. Besides by direct q-q̄ anni-
hilation electron-positron pairs can then be produced by
the process qq̄ → ρ→ e+e−, where the decay of the ρ will
be described using Vector Meson Dominance (VMD). The
aim of this investigation is to compare our results for this
particular mechanism to the rates following from direct
annihilation of quarks (Born term) and from π+π− anni-
hilation using VMD. Furthermore we assume a vanishing
baryon density (zero quark chemical potential), equilib-
rium distributions for the quarks and ρ -mesons, and the
bare mass mρ = 770 MeV for the ρ -meson.

For the interaction of quarks with ρ -mesons we adopt
the following Lagrangian:

L = −1
4
ρaµν ρ

µν
a (1)

+
1
2
m2
ρ ρ

a
µ ρ

µ
a + q̄

(
i γµ ∂

µ −mq + g γµ
τa
2
ρaµ

)
q ,

where ρaµν = ∂µρ
a
ν−∂νρaµ with the ρ-meson field ρaµ and the

quark field q. Here a denotes the isospin or flavor index
and τa the corresponding isospin matrix. For the quark
mass mq we will investigate two cases, namely a vanishing
bare mass and an effective quark mass mq = 0.5 GeV.

To get an idea about the size of the coupling constant g
describing the strength of the quark-ρ coupling we proceed
in the following way: By integrating out the ρ -mesons
from Lagrangian (1) one obtains in lowest order of the
derivative expansion the four-quark interaction term

L4−quark = −1
2
g2

m2
ρ

(
q̄γµ

τa
2
q
)2

, (2)

which might be compared with the corresponding interac-
tion term from the extended NJL model −G2 (q̄γµτaq)

2

[17,18]. This suggests the identification g =
√

8m2
ρG2

which serves to determine g by taking G2 from the lit-
erature [17,18]: g ≈ 5 − 6. In the following we choose
g = 6. The same result for g can be obtained by simply
assuming that the ρ-meson couples in a universal way to
nucleons, pions and quarks. From [2] (fourth reference) as
well as from [19] one would get g ≈ 6.1. Of course, it is not
clear whether our choice for mass and coupling of a vector
meson excitation in a hot QGP is justified. However, in
lack of any first principle calculation we decided to choose
values as suggested by measurements or calculations for
the vacuum case.

The dilepton production rate (here for massless e+-e−
pairs) can be calculated from the imaginary part of the
photon self energy according to [19]

dN

d4xd4p
= − α

12π4

1
eE/T − 1

ImΠµ
µ (P )

M2
, (3)

where α = e2/4π. Here we use the notation P = (E,p )
and p = |p |.

Using VMD the photon self energy is related to the
ρ0 -meson propagator by

ImΠµ
µ (P ) =

e2

g2
ρ

m4
ρ ImD

µ
µ(P ), (4)

where gρ = 6.07 [19]. The most general ansatz for the trace
of the imaginary part of the full ρ-meson propagator reads

ImDµ
µ(P ) = − ImF

(M2 −m2
ρ −ReF )2 + (ImF )2

− 2 ImG
(M2 −m2

ρ −ReG)2 + (ImG)2
, (5)

where F (p0, p) andG(p0, p) are the longitudinal and trans-
verse parts of the ρ0-self energy. To lowest order the ρ0-self
energy is calculated from the one-loop diagram containing
a quark loop. It is given by the one-loop photon self energy
containing an electron loop multiplied by an factor 3/2,
where the factor 3 comes from the number of quark colors
in the loop and the factor 1/2 from the flavor coefficient
tr(τ2

0 /4), which counts the number of quark flavors (u and
d). Furthermore the electron charge e has to be replaced
by g.

We restrict ourselves to the calculation of the dilep-
ton rate from the one-loop photon self energy taking into
account only bare quark propagators as we want to com-
pare our results with the Born rate, where also only bare
quarks have been considered in a one-loop approximation.
Further effects, as the ones considered in [6] using HTL
resummed quark propagators and vertices, which are im-
portant at small invariant masses, are beyond the scope
of the present work. It should be noted also that in our
model HTL diagrams are suppressed by the large mass
of the ρ-meson. Therefore these effects are of higher or-
der in g even at small invariant mass in contrast to QCD
calculations.

The one-loop photon self energy at finite temperature
can be calculated analytically in the high temperature or
equivalently hard thermal loop limit [9,20]. However, in
this approximation there is no imaginary part for time-
like photons, M2 = p2

0 − p2 > 0, resulting in a vanish-
ing dilepton production. Going beyond the hard thermal
loop approximation, integral expressions for the matter
part of the one-loop photon self energy can be derived
[21]:
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where ω2
k = k2 +m2

q, nF (ωk) = 1/[exp(ωk/T ) + 1], and
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The second term in the imaginary part, being propor-
tional to θ(−M2), describes Landau damping which takes
place only for spacelike momenta, i.e. in scattering pro-
cesses. Therefore it does not contribute to the dilepton
production. In the hard thermal loop limit, p0, p¿ k, the
first term of ImF and ImG vanishes, whereas the second
one reduces to the well known Landau damping contribu-
tion in this limit [9,20].

We do not take into account the vacuum part of the
ρ self energy because the decay of a ρ -meson into a free
quark-antiquark pair does not take place in the vacuum.
The Lagrangian (1) can be considered as an effective La-
grangian valid only at temperatures at or above the phase
transition.

Combining (3) to (6) we obtain the dilepton produc-
tion rate (ρ-quark rate) by numerical integration over the
loop momentum k (magnitude of the three-momentum).
In Fig. 1 this rate is compared to the Born rate (direct
quark-antiquark annihilation) [4] and the π+-π− annihi-
lation rate via VMD (ρ-π rate) calculated by Gale and
Kapusta [19]. In contrast to the Born rate the ρ-quark rate
as well as the ρ-π rate show a clear peak in the vicinity of
the ρ-mass. For M < 0.4 GeV the ρ-quark rate agrees well
with the Born rate, which both have no mass cut assum-
ing vanishing u- and d-quark masses. For M > 0.4 GeV

Fig. 1. ρ-quark rate (solid line), Born rate (dashed line), and
ρ-π rate (dotted line) at T = 0.15 GeV, p = 0.2 GeV and
mq = 0

Fig. 2. ρ-quark rate at T = 0.15 GeV (solid line), T = 0.2
GeV (dashed line), p = 0.2 GeV, and mq = 0

the ρ-quark rate agrees better with the ρ-π rate, which
is zero for M < 0.28 GeV due to the finite π-mass. The
agreement of the absolute values of these rates might be
accidental as, for example, the ρ-quark rate is enhanced
compared to the ρ-π rate by the larger number of quark
degrees of freedom than π degrees of freedom, but reduced
by the neglect of vacuum contributions in the first one.

We have chosen a temperature of T = 0.15 GeV in ac-
cordance with the critical temperature for the QCD phase
transition as predicted by QCD lattice theory, since we
expect ρ -mesons to co-exist with quarks only close to Tc.
For the momentum of the virtual photon we have cho-
sen p = 0.2 GeV, because CERES-SPS data show that
the dilepton enhancement occurs at small transverse mo-
menta 0.2 GeV< pT < 0.5 GeV [1]. In Fig. 2 the ρ-quark
rate is shown for different temperatures (T = 0.15 GeV
and T = 0.2 GeV). In Fig. 3 the p-dependence of this rate
is presented by comparing the rate at p = 0.2 GeV and
p = 1 GeV.

Finally, we discuss briefly the possibility of an effec-
tive, temperature dependent quark mass as indicated by
comparing the equation of state of an ideal gas of massive
quarks and gluons with lattice calculations. In the temper-
ature regime between Tc and about 2Tc, quark masses of
the order of m = 500 GeV are required to match the quasi-
particle equation of state to lattice results [8]. In Fig. 4 the
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Fig. 3. ρ-quark rate at T = 0.15 GeV, p = 0.2 GeV (solid
line), p = 1 GeV (dashed line), and mq = 0

Fig. 4. Born rate at T = 0.15 GeV, p = 0.2 GeV, mq = 0
(solid line), and mq = 0.5 GeV (dashed line)

influence of such an effective quark mass on the Born rate
is shown. The rate vanishes for M < 2mq but approaches
quickly the bare mass rate above M = 1 GeV. This re-
sult has also been found by Peshier et al. [8], to which we
would like to compare now our result of the ρ-quark rate
(Fig. 5), where the ρ -peak now is absent in the case of
finite quark masses.

If this simple picture for the QGP were true, there
would be no dilepton production from the QGP below
the ρ -peak, where the SPS dilepton enhancement has
been observed. On the other hand, although the simple
assumption of an effective quark mass might be sufficient
to explain the equation of state, the correct quark dis-
persion relation in a QGP may look completely different.
Perturbative as well as non-perturbative approaches indi-
cate two quark branches starting from the same effective
mass at zero momentum. The lower branch, correspond-
ing to a collective quark mode (plasmino) that is absent in
vacuum, shows a minimum at finite momentum. The split-
ting of the two collective quark modes and the minimum
of the plasmino branch give rise to interesting structures,
namely peaks (van Hove singularities) and gaps, in the
dilepton rate. In particular, low mass dileptons are possi-
ble coming from electromagnetic transitions from the up-
per to the lower branch [6,13]. Furthermore, a finite width
of the quarks from scattering in the QGP will change the
dilepton production rate in addition.

Fig. 5. ρ-quark rate at T = 0.15 GeV, p = 0.2 GeV, mq = 0
(solid line), and mq = 0.5 GeV (dashed line)

Summarizing, we have calculated the dilepton produc-
tion rate from quark-antiquark annihilation assuming the
co-existence of quarks and ρ -mesons around the QCD
phase transition as indicated by lattice QCD and gauged
linear sigma model calculations. Using VMD the dilepton
production rate has been calculated in a similar way as
the rate from π+-π− rate, replacing the π-loop by a quark
loop in the latter. For low invariant masses the rate turns
out to agree well with the Born rate, whereas for higher
invariant masses the agreement with the ρ-π rate is better.
Although the surprisingly good coincidence in the abso-
lute value of these rates may be accidental, considering for
example possible uncertainites in the coupling constant g,
the agreement of the shape is easy to understand (no mass
cut for massless quarks, ρ -peak in VMD).

Concerning SPS data the contribution from the ρ-
quark rate to the dilepton spectrum is by far too small
to explain the observed enhancement [1]. For the ρ-quark
rate is of the same order as the Born rate, which leads
to a dilepton yield that is about two orders of magnitude
smaller than the observed one according to hydrodynami-
cal calculations [16]. However, this situation will be differ-
ent at RHIC and LHC where a higher initial temperature
and a longer lifetime of the QGP are expected.

Finally, we have shown that an effective quark mass as
indicated by lattice calculations of the equation of state
of the QGP leads to a suppression of dileptons with in-
variant masses below about 1 GeV. However, the simple
picture of non-interacting massive quarks is probably too
oversimplified for predicting the dilepton production from
the QGP.

References

1. G. Agakichiev et al., CERES collaboration, Phys. Rev.
Lett. 75, 1272 (1995); N. Masera for the HELIOS-3 col-
laboration, Nucl. Phys. A 590, 93c (1995); A. Drees for
the CERES collaboration, Nucl. Phys. A 630, 449c (1998);
G. Agakichiev et al., CERES collaboration, Phys. Lett. B
422, 405 (1998)

2. G.E. Brown and M. Rho, Phys. Rev. Lett. 66, 2720 (1991);
B. Friman and H.J. Pirner, Nucl. Phys. A 617, 496 (1997);
R. Rapp, G. Chanfray, and J. Wambach, Nucl. Phys. A



M.H. Thoma et al.: Dilepton production from ρ-mesons in a quark-gluon plasma 223

617, 472 (1997); F. Klingl, N. Kaiser, and W. Weise,
Nucl. Phys. A 624, 527 (1997); W. Peters, M. Post,
H. Lenske, S. Leupold, and U. Mosel, Nucl. Phys. A 632,
109 (1998); W. Cassing, E.L. Bratkovskaya, R. Rapp, and
J. Wambach, Phys. Rev. C 57, 916 (1998)

3. P.V. Ruuskanen, Nucl. Phys. A 544, 169c (1992)
4. J. Cleymans, J. Fingberg, and K. Redlich, Phys. Rev. D

35, 2153 (1987)
5. T. Altherr and P.V. Ruuskanen, Nucl. Phys B 380, 377

(1992); J. Cleymans and I. Dadić, Phys. Rev. D 47, 160
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